QzmVc1

Standing on Shoulders of Giants.

0%

引言

粒子群算法源于复杂适应系统(Complex Adaptive System, CAS)。CAS理论于1994年正式提出,CAS中的成员称为主体。比如研究鸟群系统,每个鸟在这个系统中就称为主体。主体有适应性,它能够与环境及其他的主体进行交流,并且根据交流的过程“学习”或“积累经验”改变自身结构与行为。整个系统的演变或进化包括:新层次的产生(小鸟的出生);分化和多样性的出现(鸟群中的鸟分成许多小的群);新的主题的出现(鸟寻找食物过程中,不断发现新的食物)。

所以CAS系统中的主体具有4个基本特点(这些特点是粒子群算法发展变化的依据):

  • 首先,主体是主动的、活动的。
  • 主体与环境及其他主体是相互影响、相互作用的,这种影响是系统发展变化的主要动力。
  • 环境的影响是宏观的,主体之间的影响是微观的,宏观与微观要有机结合。
  • 最后,整个系统可能还要受一些随机因素的影响。

粒子群算法就是对一个CAS系统---鸟群社会系统的研究得出的。

阅读全文 »

引言

在学习奇异值分解前,请务必看一下以下对于奇异值的直观理解:奇异值的物理意义是什么?

奇异值分解是一种矩阵因子分解方法,任意一个 \(m×n\) 矩阵,都可以表示为三个矩阵的乘积(因子分解)形式,分别是 \(m\) 阶正交矩阵、由降序排列的非负的对角线元素组成的 \(m×n\) 矩阵对角矩阵和 \(n\) 阶正交矩阵,称为该矩阵的奇异值分解。矩阵的奇异值分解一定存在,但不唯一。奇异值分解可以看作是矩阵数据压缩的一种方法,即用因子分解的方式近似地表示原始矩阵,这种近似是在平方损失意义下的最有近似。

阅读全文 »

引言

历史上,PageRank算法作为计算互联网网页重要度的算法被提出。PageRank是定义在网页集合上的一个函数,它对每个网页给出一个正实数,表示网页的重要程度,PageRank值越高,网页就越重要,在互联网搜索的排序中可能就被排在前面。

假设互联网是一个有向图,在其基础上定义随机游走模型,即一阶马尔可夫链,表示网页浏览者在互联网上随机浏览网页的过程。假设浏览者在每个网页依照连接出去的超链接以等概率跳转到下一个网页,并在网上持续不断进行这样的随机跳转,这个过程形成一阶马尔可夫链。PageRank表示这个马尔可夫的平稳分布。每个网页的PageRank值就是平稳概率。

直观上,一个网页,如果指向该网页的超链接越多,随即跳转到该网页的概率也就越高,该网页的PageRank值就越高,这个网页也就越重要。PageRank值依赖于网络的拓扑结构,一旦网络的拓扑确定,PageRank值就确定。

阅读全文 »

引言

概率模型有时既含有观测变量,又含有隐变量或潜在变量。如果概率模型的变量都是观测变量,那么给定数据,可以直接用极大似然估计法,或贝叶斯估计法估计模型参数。但是 ,当模型含有隐变量时,就不能简单地使用这些估计方法。EM算法就是含有隐变量的概率模型参数的极大似然估计法,或极大后验概率估计法。

EM算法作为一种数据添加算法,在近几十年得到迅速的发展,主要源于当前科学研究以及各方面实际应用中数据量越来越大的情况下,经常存在数据缺失或者不可用的的问题,这时候直接处理数据比较困难,而数据添加办法有很多种,常用的有神经网络拟合、添补法、卡尔曼滤波法等等,但是EM算法之所以能迅速普及主要源于它算法简单,稳定上升的步骤能非常可靠地找到“最优的收敛值”。随着理论的发展,EM算法己经不单单用在处理缺失数据的问题,运用这种思想,它所能处理的问题更加广泛。有时候缺失数据并非是真的缺少了,而是为了简化问题而采取的策略,这时EM算法被称为数据添加技术,所添加的数据通常被称为“潜在数据”,复杂的问题通过引入恰当的潜在数据,能够有效地解决我们的问题。

介绍EM算法之前,我们需要介绍极大似然估计以及Jensen不等式

阅读全文 »

引言

提升(boosting)方法是一种常用的统计学习方法,应用广泛且有效。在分类问题中,它通过改变训练样本的权重,学习多个分类器,并将这些分类器进行线性组合,提高分类的性能。

提升方法基于这样一种思想:对于一个复杂任务来说,将多个专家的判断进行适当的综合所得出的判断,要比其中任何一个专家的单独判断好。实际上,就是“三个臭皮匠顶个诸葛亮”的道理。提升方法就是从弱学习算法出发,反复学习,得到一系列弱分类器,然后组合这些弱分类器,构成一个强分类器。大多数提升方法都是改变训练数据的概率分布(训练数据的权值分布),针对不同的训练数据分布调用弱学习算法学习一系列的弱分类器。

这样,对提升方法来说,有两个问题:一是每一轮如何改变训练数据的权值分布;二是如何将弱分类器组合成一个强分类器。关于第一个问题,AdaBoost的做法是提高那些被前一轮弱分类器错误分类样本的权值,而降低那些被正确分类样本的权值。这样一来,那些没有得到正确分类的数据,由于其权值的加大而收到后一轮的弱分类器的更大关注。至于第二个问题,AdaBoost采取加权多数表决的方法,即加大分类误差率小的弱分类器的权值,使其在表决中起较大的作用;减小分类误差率大的弱分类器的权值,使其在表决中起较小的作用。

AdaBoost的巧妙之处就在于它将这些想法自然且有效的实现在一种算法里。

阅读全文 »

一、什么是遗传算法

1.1 遗传算法的科学定义

遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,不需要确定的规则就能自动获取和指导优化的搜索空间,自适应地调整搜索方向。

遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。

阅读全文 »